Learning in compressed space

نویسندگان

  • Alexander Fabisch
  • Yohannes Kassahun
  • Hendrik Wöhrle
  • Frank Kirchner
چکیده

We examine two methods which are used to deal with complex machine learning problems: compressed sensing and model compression. We discuss both methods in the context of feed-forward artificial neural networks and develop the backpropagation method in compressed parameter space. We further show that compressing the weights of a layer of a multilayer perceptron is equivalent to compressing the input of the layer. Based on this theoretical framework, we will use orthogonal functions and especially random projections for compression and perform experiments in supervised and reinforcement learning to demonstrate that the presented methods reduce training time significantly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k

Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...

متن کامل

Deblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation

JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...

متن کامل

Invertible Nonlinear Dimensionality Reduction via Joint Dictionary Learning

This paper proposes an invertible nonlinear dimensionality reduction method via jointly learning dictionaries in both the original high dimensional data space and its low dimensional representation space. We construct an appropriate cost function, which preserves inner products of data representations in the low dimensional space. We employ a conjugate gradient algorithm on smooth manifold to m...

متن کامل

A Contact Problem of an Elastic Layer Compressed by Two Punches of Different Radii

The elasticity mixed boundary values problems dealing with half-space contact are generally well resolved. A large number of these solutions are obtained by using the integral transformation method and methods based the integral equations. However, the problems of finite layer thicknesses are less investigated, despite their practical interests. This study resolves a quasi-stationary problem of...

متن کامل

Cell Detection with Deep Convolutional Neural Network and Compressed Sensing

The ability to automatically detect certain types of cells in microscopy images is of significant interest to a wide range of biomedical research and clinical practices. Cell detection methods have evolved from employing hand-crafted features to deep learningbased techniques to locate target cells. The essential idea of these methods is that their cell classifiers or detectors are trained in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2013